Electroencephalograms Research

Advances in EEG 

Modern advances in EEG have included what is referred to as digital EEG. Here brain signals are similarly collected from the scalp and amplified but are fed into a computer (i.e., digitized) and then interpreted by viewing them not on paper but on the computer screen. Children's only uses digital EEG. Important advantages include storage of efficient digital media rather than on bulky paper. Another advantage is the ability to view the same EEG signals from different perspectives - paper affords only one view of a time period. A draw-back is that the computer screen may not afford the same clarity of image that is available on paper. Another advance is the more speedy placement of electrodes by using an elastic cap with electrodes already imbedded. Careless use of this technology may result in improperly positioned electrode or poor electrode contact.

EEG has survived the advent of all the modern neuroimaging techniques including pneumoencephalography, arteriography, CT scanning, MRI, functional MRI (fMRI), single photon-emission computed tomography (SPECT) and positron emission tomography (PET) and remains the number one diagnostic test for epilepsy. Its advantages, among other measures of brain function, is that EEG demonstrates a nearly diagnostic finding in epilepsy and it is the most sensitive functional test of changes in brain function over short time periods. It lacks primarily in ability to localize exactly where in the brain abnormalities arise. Clinically, therefore, EEG is often combined with other neuroimaging tests. Training in EEG is also very demanding with the value of a given EEG to a patient often determined by who interprets it. This is very true in pediatric EEG and especially true for newborn EEGs. The child and neonatal EEGs are not simply smaller versions of adult EEG. Pediatric EEG is a most demanding specialty.